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RAYLEIGH–BENARD PROBLEM FOR AN ANOMALOUS FLUID

UDC 532.51.013.4:536.25A. N. Ermolenko

The stability of the state of rest of a heated infinite horizontal layer of a viscous heat-conducting
fluid (the Rayleigh–Benard problem) is considered. The equation of state for the fluid takes into
account the nonmonotonic temperature and pressure dependence of water density. Instability of the
mechanical equilibrium with respect to small monotonic perturbations is studied. The effect of the
problem parameters on the Rayleigh numbers and their corresponding critical motions is investigated
numerically using linear theory. Numerical investigation of the spectral problem is based on the
Godunov–Abramov orthogonalization method. The calculation results are compared with the well-
known results for the limiting case where the density is considered a quadratic function of temperature
and does not depend on pressure.

Key words: Rayleigh–Benard problem, Oberbeck–Boussinesq approximation, anomalous fluid,
instability, perturbation monotonicity principle.

Introduction. Interest in the Rayleigh–Benard problem for an anomalous fluid is motivated by the recent
studies performed at Lake Baikal. The results of observations obtained using modern instrumentation indicate
the existence of a deep mixing mechanism in the lake due to transport of Lake Baikal surface water to bottom
regions [1, 2]. There are several hypotheses to explain this phenomenon. One of these hypotheses is based on the
effect of anomalous thermal expansion of water.

If the pressure–density relation is ignored, the water density is a nonmonotonic function of temperature.
This function reaches a maximum at a temperature approximately equal to 4◦C (the so-called thermal-expansion
inversion temperature). In this case, the equation of state for water can be written as

ρ = ρ0[1 − γ(T − T0)2],

where ρ0 is the maximum density, γ is the thermal-expansion coefficient, and T0 is the inversion temperature. The
nonmonotonic temperature dependence of the density is responsible for a complex stratification in a fluid layer
whose surface temperature is higher than the inversion temperature and whose lower-boundary temperature is
lower than the inversion temperature. Above the inversion point, the density gradient coincides with the gravity
direction and the fluid is gravitationally stable. Below this point, the density decreases with increasing depth and
the fluid stratification is unstable. Convective flows that arise in the lower unstable region propagate to the upper,
stably stratified zone. Similar phenomena occur in other situations where stable fluid layers bound an unstably
stratified region. Such convection is called a penetrative one. In some cases, however, one should take into account
the effects caused by density deviations due to pressure variations. Vereshchagin was the first to pay attention to
the importance of these factors [3]. For example, the water inversion temperature is not constant but decreases with
increasing depth (and, hence, pressure) by approximately 0.21◦C per each 100 m [2]. The maximum values of the
density and thermal-expansion coefficient are also functions of pressure. The examined pressure and temperature
dependence of the density describes this anomaly. If the fluid depth is insignificant, the pressure dependence of the
density can be ignored. However, at large depths, in particular, in deep-water lakes (the maximum depth of Lake
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Baikal is 1637 m, and the average depth is 730 m), pressure gradients can have a significant effect on the density
distribution, and hence, and on convective processes (see [4]).

Stability is studied as follows. The equations of motion in dimensionless variables are first derived. Then,
the basic state (mechanical equilibrium in this case) is determined. Next, small perturbations are added to the
functions describing the velocity, pressure, and temperatures distributions in the state of rest, and the problem is
then written in terms of perturbations and is linearized. The linear problem for perturbations admits solutions of
special form, in particular, in the case of exponential time dependences of perturbations (normal perturbations) [5].
This allows one to separate variables and obtain a spectral problem, which is studied numerically.

One of the best-studied convection models is the Oberbeck–Boussinesq approximation [5]. This model
includes the Navier–Stokes equations and the heat-transfer equation with the density considered a liner function
of temperature. In the derivation of the equations of this approximation, it is assumed that the density deviations
from a certain average value due to fluid thermal expansion are so small that they can be ignored in all equations,
except in the momentum equation, where these deviations are significant only in the terms involving the buoyancy
force, which is responsible for the occurrence of convective motion. In the problem considered, this assumption is
also adopted.

For the Oberbeck–Boussinesq approximation, the perturbation monotonicity principle (the principle of mono-
tonic variation in stability) was proved [5]. This principle is as follows. The solutions of the linear problem for
perturbations that arises in the stability analysis are sought in the form of the so-called normal perturbations
(V ′, P ′, T ′)(x, y, z, t) ∼ (V , P, T )(z) eσt, where σ is a decrement that defines perturbation propagation with time.
The eigenvalues σ of the corresponding spectral problem are generally complex) (such perturbations oscillate at
a frequency determined by the imaginary part of the decrement). The damping or growth of these oscillating
perturbations depends on the sign of the real part of the decrement. If Reσ < 0, such perturbations damp with
time and the initial state of the fluid is stable. The presence of perturbations with a positive real part of the
decrement implies instability of the initial state with respect to these perturbations. The eigenvalues that lie on the
imaginary axis are called critical (threshold) eigenvalues. In the parameter space, they separate the stability region
from the instability region. In the Oberbeck–Boussinesq approximation, all eigenvalues remain real (in this case,
perturbations vary monotonically with time) and the critical Rayleigh numbers are determined from the condition
σ = 0. It is assumed that for the given model, too, the analysis can be confined to monotonic instability.

Investigation of penetrative convection in a horizontal fluid layer with density inversion was first performed
in [6], together with an analysis of experimental studies [7] of convection in a horizontal water layer heated from
above, whose lower boundary was maintained at a temperature equal to 0◦C. The following facts were established
in the experiments: convection was observed not only in the instability region but also in the zone of stable water
stratification; over the entire convection region, except near the upper and lower boundaries, the water temperature
was about 4◦C; in the case where the temperature of the upper boundary was in the range of 12–20◦C, additional
convective cells on the vertical arose.

In [6], a layer with free isothermal boundaries was studied. In the vicinity of the temperature of maximum
density, the equation of state for water was given by the relation ρ = ρ0(1 − γΔT 2), where ΔT is the temperature
deviation from the inversion temperature, ρ0 is the maximum density, and γ = 7.68 · 10−6 ◦C−2. For the spectral
problem in the case of free boundaries, the perturbation monotonicity principle was formulated. Linear stability
analysis showed that at a layer surface temperature T = 4◦C the critical Rayleigh number coincided with its value
in the Rayleigh–Benard problem and decreased with a temperature rise. In [6], the following explanation of this
interesting fact was proposed: the stable upper layer compensated for the boundary conditions, which allowed the
perturbations to take the most convenient shape. The minimum of the critical Rayleigh number was reached at
a surface temperature equal to 6.7◦C. In addition, the author noted an analogy with the stability problem for
Couette flow between oppositely rotating cylinders in the case where the boundaries of the layer are considered
solid. This allowed the critical Rayleigh number to be calculated from known results for this case, too. Later,
this analogy was investigated in other studies (see, for example, [8]). In [6], a penetrative convection model in the
Oberbeck–Boussinesq approximation was used.

The applicability of the Oberbeck–Boussinesq approximation in some problems related to the occurrence
of convection in fluid layers is considered in [9, 10] taking into account additional factors characterizing thermal
expansion.
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Fig. 1. Density and temperature distributions in mechanical equilibrium.

A review of the numerical methods used to solve hydrodynamic stability problems is given in [11]. In
numerical studies of linear eigenvalue boundary-value problems with boundary conditions imposed at both ends of
the integration interval, the solution of the original problem can be reduced to successive solutions of a number of
derivative problems with boundary conditions specified only at one end of the interval. Each of these problems is
derived from the original problem, and the solution of the original problem is sought as a linear combination of the
solutions of these derivative problems. The coefficients of the linear combination are determined from the boundary
conditions of the original problem, and the eigenvalues are zeroes of a certain test function. More details of this
approach and some of its modifications and special features of use are described in [12–14].

Data of full-scale observations at Lake Baikal used in numerical calculations are given in [2, 15]. In particular,
it is noted that the mesothermic maximum density point (the point at which the temperature coincides with the
inversion temperature) in the lake is located at a depth of 200–300 m. Data on changes in the temperature regime
are also given in [2, 15].

1. Formulation of the Problem. We consider an infinite horizontal layer of an initially quiescent fluid of
thickness L with planar boundaries at a constant temperature. The lower boundary of the layer is considered solid,
and the upper boundary is a free nondeformable surface. The temperatures on the lower and upper boundaries are
equal to T1 and T2, respectively. The fluid (water) density varies as [16]

ρ(T, p) = ρm(p)[1 − γ(p)(T − Tm(p))2], (1)

where

ρm(p) = ρ0(1 + eρp) = 999.972 + 4.916021 · 10−2p,

γ(p) = γ0(1 − eγp) = 8.572628 · 10−6 − 7.061491 · 10−9p,

Tm(p) = T0(1 − eT p) = 3.985694− 0.020617p

(the pressure in bars and the temperature in Celsius). In the temperature range from 0 to 10◦C, the inaccuracy of
this formula does not exceed 0.006%.

The mesothermic density maximum is reached in the layer at the inversion temperature Tmd. For definiteness,
we set T1 < Tmd < T2. The coordinate system is introduced so that the x and y axes are in the plane of the lower
boundary of the layer and the basis vector of the z axis is directed from the lower to the upper boundary. The
coordinate system and the density and the temperature distributions in the layer in equilibrium are shown in Fig. 1.

In the limiting case where the functions ρm(p), γ(p), Tm(p) are constants, the problem of penetrative
convection in a similar formulation was studied in [8].
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2. Equations of Motion in Dimensionless Variables. In the derivation of the convection model, the
basic equations are the Navier–Stokes equations and the heat-transfer equation. As in the Oberbeck–Boussinesq
approximation, the temperature and pressure dependence of the density is manifested only in the terms involving
the buoyancy force. The temperature is reckoned from the lower-boundary temperature.

The following dimensionless quantities are introduced:

ρ = Rρ′, T = θT ′, x = hx′, V = ϑV ′, p = Pp′, t = τt′.

As the characteristic scales, we choose the maximum density on the surface of the layer ρ0, the width h of the
part of the layer below the inversion point, the temperature difference T0−T1, and the velocity of convective rise of
a heated fluid particle ϑ =

√
ghγ0θ2. The pressure and time scales are expressed in terms of the chosen quantities

as P = ρ0ϑ
2 and τ = h/ϑ (see [17]). We note that instability can arise both in the region below the inversion point

and in the upper part of the layer. The thickness of the lower part is always used as the characteristic length scale
to combine these two cases. This choice is justified when the inversion point is located closer to the middle of the
layer, i.e., both parts of the layer are comparable in thickness.

Under the above assumptions, the free-convection equations and the boundary conditions are written in
dimensionless variables as follows (primes are omitted):

dV

dt
= νΔV −∇p− 1

β
(1 + ερp)[1 − β(1 − εγp)(T − 1 + εT p)2]k,

dT

dt
= δΔT, ∇ · V = 0,

z = 0: T = 0, V = 0,

z = λ: T = mλ, vz =
∂vx

∂z
=
∂vy

∂z
= 0.

(2)

Here V = (vx, vy, vz) is the velocity, T is the temperature deviation from the lower-boundary temperature, p is the
pressure, k is the basis vector of the z axis, and d/dt = ∂/∂t+ (V · ∇).

In the problem, the following dimensionless parameters appear: ν = η/(ρ0ϑh) is the kinematic viscosity
parameter, β = γ0θ

2, ερ = eρP , εγ = eγP , εT = T0eTP/θ, δ = κ/(cpρ0ϑh) is the Fourier number, m = (Tmd −
T1)/(T0 − T1), λ = L/h is the inversion parameter that characterizes the position of the mesothermic maximum
density point in the layer [by virtue of the linearity of the equilibrium temperature distribution, λ = (T2−T1)/(Tmd−
T1)]. Here η and κ are the dynamic viscosity and thermal conductivity, and cp is the specific heat of the fluid.

Since we study instability only with respect to monotonic perturbations, we shall consider steady-state
solutions of the problem that are periodic in x and y.

3. Basic State (Mechanical Equilibrium). The steady-state solution V0, p0, T0 of the boundary-value
problem (2) that correspond to mechanical equilibrium is written as

V0 = 0, T0 = mz.

The pressure is determined by numerical solution of the equation
dp0

dz
= −ερεγε

2
T p

4
0 + [−2ερεγεT (mz − 1) + ε2T (ερ − εγ)]p3

0

+ [−ερεγ(mz − 1)2 + 2εT (ερ − εγ)(mz − 1) + ε2T ]p2
0

+
[
(ερ − εγ)(mz − 1)2 + 2εT (mz − 1) − ερ

β

]
p0 + (mz − 1)2 − 1

β

for p0 = 0 (z = λ).
4. Linearized Equations for Perturbations. New steady-state periodic solutions of the problem (2) are

sought in the form V̄ = V0 + δV , p̄ = p0 + νδp, T̄ = T0 +T , where V , p, and T are unknown perturbations. Taking
into account the expressions for V0, p0, and T0 after linearization, we obtain the equations for velocity, pressure,
and temperature perturbations

ΔV −∇p+ (ζ(z)RT + ξ(z)p)k = 0,
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mvz = ΔT, (3)

∇ · V = 0

with the corresponding boundary conditions

z = 0: T = 0, V = 0,

z = λ: T = 0, vz =
∂vx

∂z
=
∂vy

∂z
= 0.

(4)

Here ζ(z) = (1 + ερp0)(1 − εγp0)f , f = T0 − 1 + εT p0, ξ(z) = 2εT ζ(z) + ερ(1 − εγp0)f2 − εγ(1 + ερp0)f2 − ερ/β,
and R = 2/(νδ) is the Rayleigh number.

5. Spectral Problem for Determining the Critical Rayleigh Number. We seek solutions of the
linear problem (3), (4) in the form of normal perturbations:

(V ′, p′, T ′)(x, y, z, t) = (V , p, T )(z) exp (σt+ iαxx+ iαyy).

By virtue of the assumption of monotonic instability, we set σ = 0. Separating variables and eliminating pressure,
we obtain the following eigenvalue boundary-value problem for an ordinary differential equation:

T (6) − ξ(z)T (5) − 3α2T (4) + 2α2ξ(z)T (3) + 3α4T ′′ − α4ξ(z)T ′ − (α6 +mα2ζ(z)R)T = 0; (5)

z = 0: T = T ′′ = T (3) − α2T ′ = 0,

z = λ: T = T ′′ = T (4) = 0.
(6)

Here α2 = α2
x + α2

y is the wavenumber.
6. Algorithm of Numerical Solution of the Spectral Problem. The eigenvalue problem (5), (6) is

studied numerically as follows.
The temperature perturbation amplitude is written as the linear combination

T =
∑

akwk(z), k = 1, 6, (7)

where each of the functions wk(z) is a solution of the Cauchy problem

Lwk(z) = 0,

wk(λ) = 0,
. . . . . . . . . . . .

w
(k−1)
k (λ) = 1,
. . . . . . . . . . . .

w
(5)
k (λ) = 0

(8)

[L is a differential operator that corresponds to Eq. (5)].
For z = λ, the boundary conditions imply that a1 = a3 = a5 = 0. Using the boundary conditions for

z = 0, we obtain a homogeneous system of linear algebraic equations for the other three coefficients of the linear
combination (7). This system has a nontrivial solution if its determinant is equal to zero. For the specified value of
α, the condition of vanishing of the determinant of this system determines the critical Rayleigh number. It should
be noted that sometimes because of the complex dependence of the characteristic determinant on the parameters,
it is difficult to find its zeros. Then, instead of seeking the zeros of the determinant, it is reasonable to require
that one of conditions (6) be satisfied. In these cases, any of the nonzero physical quantities is normalized so that
its value remains constant as the problem parameters are changed. Then, the coefficients of the series (7) can be
determined from the normalization condition and the remaining boundary conditions [14]. The minimum value
obtained is taken to be the true critical value of the Rayleigh number R∗. This determination is called the Rayleigh
principle.

This sequence of operations, however, can lead to a loss of accuracy in numerical calculations. Indeed, the
solution of the Cauchy problem (8) is equivalent to the solution of a system of linear ordinary differential equations
for which the vector of unknown quantities includes the function wk(z) and the first five of its derivatives. During
numerical solution, as the end of the integration interval is approached, the system of the vectors into which the
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solution of the problem (5), (6) is expanded can degenerate, resulting in an increase in the error in determining the
coefficients of the linear combination (7) and the solution of the original problem at intermediate points. To avoid
this, it is common to use the approach described, for example, in [12, 13]. The integration interval is broken up into
a number of intervals of smaller length, and the system of basis vectors is orthogonalized at the stop points and is
then used as the initial data for the integration in the next interval. The coefficients of the series (7) are determined
for each of these intervals by recursive formulas. The orthogonalizations thus performed prevent flattening of the
basis vectors, and the calculation accuracy increases.

7. Calculation of Critical Flows. Critical flows satisfy the steady-state equations (3) and (4). For their
analysis, it is convenient to introduce the stream function for the velocity perturbations ψ(x, z) [the problem is now
solved on the plane (x, z)] using the formulas

vx =
∂ψ(x, z)
∂z

, vz = −∂ψ(x, z)
∂x

.

Let us consider normal perturbations which are periodic in x:

ψ′(x, z) = ψ(z) eiαxx, p′(x, z) = p(z) eiαxx, T ′(x, z) = T (z) eiαxx.

Introducing the stream function into (3), (4) and proceeding further as in the case described above, we obtain
the boundary-value problem for the temperature perturbation, which has the same form as the problem (5), (6) by
virtue of invariance under rotation of the horizontal plane. However, the wavenumber α is now given by the formula
α = αx. In this case, the stream-function perturbation amplitude ψ(z) is related to the temperature perturbation
amplitude T (z) by the formula

ψ(z) = (α2T (z)− T ′′(z))/(iαm),

and the streamlines are the surface isolines

F (x, z) = Re [ψ′(x, z)]. (9)

In the numerical calculations, the values of the Rayleigh number and the wavenumber were set equal to the
corresponding critical values.

8. Numerical Experiments. To calculate the dimensionless quantities in the spectral problem (5), (6),
it is sufficient, for example, to specify the layer thickness L, the inversion parameter λ, and the lower-boundary
temperature T1 and to use the values of the physical constants from the equation of state (1). In determining
the function describing the temperature distribution in rest, one should also find the value of the parameter m =
(Tmd − T1)/(T0 − T1), i.e., the point Tmd of intersection of the temperature profile for the equilibrium state with
the inversion-temperature curve. For this, one can use the known pressure dependence of the inversion temperature
given by the formula Tm(p) = T0(1−eTp) = 3.985694−0.020617p. Because the density deviations from the average
value due to pressure and temperature variations are small, in this formula one can use hydrostatic pressure, i.e.,
the pressure corresponding to equilibrium at a constant characteristic density. We note that a linear dependence
of the inversion temperature on depth adequately describes the behavior of the water inversion temperature. For
example, in [2], the formula Tm = 3.98 − 0.0021H is given, where H is the depth in meters.

In the calculation of the streamlines shown in Fig. 2, the temperature at the bottom of the layer and the
position of the inversion point were chosen to be close to the data of full-scale observations at Lake Baikal [2, 15].
The temperature of the lower boundary was set equal to 3◦C, the inversion point was at a depth of 300 m, and
L = 500, 730, and 1000 m; the position of the inversion point corresponds to the value z = 1. The stream-function
perturbation amplitude is determined after the solution of the homogeneous system of linear algebraic equations
for the coefficients of the series (7) with accuracy up to an arbitrary factor. The isoline values in Figs. 2 and 3 are
given for the case where the norm of the solution vector of this system is equal to 100.

The occurrence of instability in the lower part of the layer is shown in Fig. 3. This picture is less characteristic
of Lake Baikal, but it is possible to imagine a situation where at the bottom of the lake there is a source that causes
convective motion. In Fig. 3, the depth of the layer and the temperature at the bottom are the same and are 730 m
and 1◦C, respectively; the position of the inversion point changed. For intermediate values of the parameter λ, as
in Fig. 2b, the occurrence of two convective cells is possible.

From Figs. 2 and 3, it follows that the position of the inversion point has a significant effect on the flow
pattern in the layer. The fluid particles from the surface of the layer can penetrate to a depth of about hundreds
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Fig. 2. Occurrence of instability in the upper part of the layer: (a) L = 500 m, T1 = 3◦C, Tmd =
3.38◦C, and T2 = 3.95◦C; (b) L = 730 m, T1 = 3◦C, Tmd = 3.38◦C, and T2 = 3.64◦C; (c) L =
1000 m, T1 = 3◦C, Tmd = 3.38◦C, T2 = 3.54◦C; the numbers are values of the surface isolines (9).

Fig. 3. Occurrence of instability in the lower part of the layer: (a) L = 730 m, T1 = 1◦C, Tmd =
3.49◦C, T2 = 4.74◦C, and λ = 1.5; (b) L = 730 m, T1 = 1◦C, Tmd = 2.93◦C, T2 = 7.76◦C, and
λ = 3.5; the numbers are values of the surface isolines (9).
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Fig. 5. Critical wavenumber versus the inversion parameter: 1) the temperature gradient on the
boundaries of the layer is lower than the inversion temperature gradient; 2) the temperature gradient
on the boundaries of the layer is higher than the inversion-temperature gradient.
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of meters. In the case considered, this can be explained by the fact that the linear temperature profile is unstable
above the inversion point (see Fig. 2) and below it (see Fig. 3) [18].

Curves of the quantities describing stability (critical Rayleigh number, critical wavenumber) versus problem
parameters are given in Figs. 4 and 5.

Figure 4 shows neutral curves (curves of the Rayleigh number versus wavenumber); the values of the Rayleigh
number are normalized by the corresponding limiting critical value R∗ [8]. It can be noted that if the depth of
the layer is insignificant (in such cases, pressure gradients have little effect and the functions ρm, γ, and Tm in
Eq. (1) can be considered constant, the critical values of the Rayleigh number (which are chosen as minima on the
corresponding neutral curves) agree well with the values for the limiting case. For large values of L, significant
differences arise.

In Fig. 4a, curve 4 is of interest. The value of the critical wavenumber differs from the corresponding limiting
value [8]. The problem can be considered for the two cases where the temperature gradient on the boundaries of
the layer is higher or lower than the corresponding gradient of the inversion temperature. [A change in the depth
of the layer results in a change in the inversion-temperature gradient on the layer boundaries (due to an increase in
the pressure gradient) and a change in the difference T2−T1 (due to the linearity of the temperature distribution in
the state of mechanical equilibrium)]. The values of α∗ for various values of the inversion parameters in these two
cases are shown in Fig. 5. A change in the critical wavenumber α∗ compared to the limiting value [8] is observed
for fairly low temperature gradients. This case is shown by curve 1. In the other case, the critical value of the
wavenumber coincides with its limiting value (curve 2).

Conclusions. A convection model taking into account the temperature and pressure dependence of the
fluid density was considered. The numerical analysis of this model leads to the following conclusions.

The pressure dependence of the density has a significant effect on convection in deep fluid layers.
For a small depth of the layer and fairly small values of the parameters ερ, εγ , and εT , which characterize

the pressure dependence of the density, this dependence can be ignored. In such cases, the results are in good
agreement with the results known for the case of penetrative convection.

The processes due to the anomaly of thermal expansion can be responsible for convection. The motion that
arises in this case is capable of transferring particles from the surface to a depth of several hundred meters. However,
it should be taken into account that the real temperature distribution is not linear, according to data of full-scale
observations.
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